Declarations
Declaration:
TypedefDeclaration
AliasDeclaration
Decl
TypedefDeclaration:
typedef Decl
AliasDeclaration:
alias Decl
Decl:
StorageClasses Decl
BasicType Declarators ;
BasicType Declarator FunctionBody
AutoDeclaration
Declarators:
DeclaratorInitializer
DeclaratorInitializer , DeclaratorIdentifierList
DeclaratorInitializer:
Declarator
Declarator = Initializer
DeclaratorIdentifierList:
DeclaratorIdentifier
DeclaratorIdentifier , DeclaratorIdentifierList
DeclaratorIdentifier:
Identifier
Identifier = Initializer
BasicType:
BasicTypeX
.IdentifierList
IdentifierList
Typeof
Typeof . IdentifierList
BasicTypeX:
bool
byte
ubyte
short
ushort
int
uint
long
ulong
char
wchar
dchar
float
double
real
ifloat
idouble
ireal
cfloat
cdouble
creal
void
BasicType2:
*
[ ]
[ Expression ]
[ Expression .. Expression ]
[ Type ]
delegate Parameters
function Parameters
Declarator:
BasicType2opt ( Declarator ) DeclaratorSuffixesopt
BasicType2opt Identifier DeclaratorSuffixesopt
DeclaratorSuffixes:
DeclaratorSuffix
DeclaratorSuffix DeclaratorSuffixes
DeclaratorSuffix:
[ ]
[ Expression ]
[ Type ]
TemplateParameterListopt Parameters
IdentifierList:
Identifier
Identifier . IdentifierList
TemplateInstance
TemplateInstance . IdentifierList
StorageClasses:
StorageClass
StorageClass StorageClasses
StorageClass:
abstract
auto
const
deprecated
extern
final
scope
static
synchronized
Property:
@ PropertyIdentifier
PropertyIdentifier:
property
safe
trusted
system
disable
Type:
BasicType
BasicType Declarator2
Declarator2:
BasicType2opt DeclaratorSuffixesopt
BasicType2opt ( Declarator2 ) DeclaratorSuffixesopt
Parameters:
( ParameterList )
( )
ParameterList:
Parameter
Parameter , ParameterList
...
Parameter:
InOutopt BasicType Declarator
InOutopt BasicType Declarator ...
InOutopt BasicType Declarator = DefaultInitializerExpression
InOutopt Type
InOutopt Type ...
InOut:
InOutX
InOut InOutX
InOutX:
auto
const
final
in
inout
lazy
out
ref
scope
shared
MemberFunctionAttributes:
MemberFunctionAttribute
MemberFunctionAttribute MemberFunctionAttributes
MemberFunctionAttribute:
const
immutable
inout
shared
FunctionAttribute
DefaultInitializerExpression:
AssignExpression
Initializer:
VoidInitializer
NonVoidInitializer
NonVoidInitializer:
AssignExpression
ArrayInitializer
StructInitializer
ArrayInitializer:
[ ]
[ ArrayMemberInitializations ]
ArrayMemberInitializations:
ArrayMemberInitialization
ArrayMemberInitialization ,
ArrayMemberInitialization , ArrayMemberInitializations
ArrayMemberInitialization:
NonVoidInitializer
AssignExpression : NonVoidInitializer
StructInitializer:
{ }
{ StructMemberInitializers }
StructMemberInitializers:
StructMemberInitializer
StructMemberInitializer ,
StructMemberInitializer , StructMemberInitializers
StructMemberInitializer:
NonVoidInitializer
Identifier : NonVoidInitializer
Declaration Syntax
Declaration syntax generally reads right to left:
int x; // x is an int
int* x; // x is a pointer to int
int** x; // x is a pointer to a pointer to int
int[] x; // x is an array of ints
int*[] x; // x is an array of pointers to ints
int[]* x; // x is a pointer to an array of ints
Arrays read right to left as well:
int[3] x; // x is an array of 3 ints
int[3][5] x; // x is an array of 5 arrays of 3 ints
int[3]*[5] x; // x is an array of 5 pointers to arrays of 3 ints
Pointers to functions are declared using the function keyword:
int function(char) x; // x is a pointer to
// a function taking a char argument
// and returning an int
int function(char)[] x; // x is an array of
// pointers to functions
// taking a char argument
// and returning an int
C-style array, function pointer and pointer to array declarations are possible as an alternative:
int x[3]; // x is an array of 3 ints
int x[3][5]; // x is an array of 3 arrays of 5 ints
int (*x[5])[3]; // x is an array of 5 pointers to arrays of 3 ints
int (*x)(char); // x is a pointer to a function taking a char argument
// and returning an int
int (*[] x)(char); // x is an array of pointers to functions
// taking a char argument and returning an int
In a declaration declaring multiple symbols, all the declarations must be of the same type:
int x,y; // x and y are ints
int* x,y; // x and y are pointers to ints
int x,*y; // error, multiple types
int[] x,y; // x and y are arrays of ints
int x[],y; // error, multiple types
Implicit Type Inference
AutoDeclaration:
StorageClasses AutoDeclarationX ;
AutoDeclarationX:
Identifier = Initializer
AutoDeclarationX , Identifier = Initializer
If a declaration starts with a StorageClass and has a NonVoidInitializer from which the type can be inferred, the type on the declaration can be omitted.
static x = 3; // x is type int
auto y = 4u; // y is type uint
auto s = "string"; // s is type char[6]
class C { ... }
auto c = new C(); // c is a handle to an instance of class C
The NonVoidInitializer cannot contain forward references (this restriction may be removed in the future). The implicitly inferred type is statically bound to the declaration at compile time, not run time.
Type Defining
Strong types can be introduced with the typedef. Strong types are semantically a distinct type to the type checking system, for function overloading, and for the debugger.
typedef int myint;
void foo(int x) { . }
void foo(myint m) { . }
.
myint b;
foo(b); // calls foo(myint)
Typedefs can specify a default initializer different from the
default initializer of the underlying type:
typedef int myint = 7;
myint m; // initialized to 7
Type Aliasing
AliasDeclarations create a symbol that is an alias for another type, and can be used anywhere that other type may appear.
alias abc.Foo.bar myint;
Aliased types are semantically identical to the types they are aliased to. The debugger cannot distinguish between them, and there is no difference as far as function overloading is concerned. For example:
alias int myint;
void foo(int x) { . }
void foo(myint m) { . } // error, multiply defined function foo
Type aliases are equivalent to the C typedef.
Alias Declarations
A symbol can be declared as an alias of another symbol. For example:
import string;
alias string.strlen mylen;
...
int len = mylen("hello"); // actually calls string.strlen()
The following alias declarations are valid:
template Foo2(T) { alias T t; }
alias Foo2!(int) t1;
alias Foo2!(int).t t2;
alias t1.t t3;
alias t2 t4;
t1.t v1; // v1 is type int
t2 v2; // v2 is type int
t3 v3; // v3 is type int
t4 v4; // v4 is type int
Aliased symbols are useful as a shorthand for a long qualified symbol name, or as a way to redirect references from one symbol to another:
version (Win32)
{
alias win32.foo myfoo;
}
version (linux)
{
alias linux.bar myfoo;
}
Aliasing can be used to ‘import’ a symbol from an import into the current scope:
alias string.strlen strlen;
Aliases can also ‘import’ a set of overloaded functions, that can be overloaded with functions in the current scope:
class A {
int foo(int a) { return 1; }
}
class B : A {
int foo( int a, uint b ) { return 2; }
}
class C : B {
int foo( int a ) { return 3; }
alias B.foo foo;
}
class D : C {
}
void test()
{
D b = new D();
int i;
i = b.foo(1, 2u); // calls B.foo
i = b.foo(1); // calls C.foo
}
Note: Type aliases can sometimes look indistinguishable from alias declarations:
alias foo.bar abc; // is it a type or a symbol?
The distinction is made in the semantic analysis pass.
Aliases cannot be used for expressions:
struct S { static int i; }
S s;
alias s.i a; // illegal, s.i is an expression
alias S.i b; // ok
b = 4; // sets S.i to 4
Extern Declarations
Variable declarations with the storage class extern are not allocated storage within the module. They must be defined in some other object file with a matching name which is then linked in. The primary usefulness of this is to connect with global variable declarations in C files.typeof
Typeof:
typeof ( Expression )
typeof ( return )
Typeof is a way to specify a type based on the type of an expression. For example:
void func(int i) {
typeof(i) j; // j is of type int
typeof(3 + 6.0) x; // x is of type double
typeof(1)* p; // p is of type pointer to int
int[typeof(p)] a; // a is of type int[int*]
writefln("%d", typeof('c').sizeof); // prints 1
double c = cast(typeof(1.0))j; // cast j to double
}
Expression is not evaluated, just the type of it is generated:
void func() {
int i = 1;
typeof(++i) j; // j is declared to be an int, i is not incremented
writefln("%d", i); // prints 1
}
There are two special cases:
- typeof(this) will generate the type of what this would be in a non-static member function, even if not in a member function.
- Analogously, typeof(super) will generate the type of what super would be in a non-static member function.
class A { }
class B : A {
typeof(this) x; // x is declared to be a B
typeof(super) y; // y is declared to be an A
}
struct C {
typeof(this) z; // z is declared to be a C*
typeof(super) q; // error, no super struct for C
}
typeof(this) r; // error, no enclosing struct or class
Where Typeof is most useful is in writing generic template code.
Void Initializations
VoidInitializer:
void
Normally, variables are initialized either with an explicit Initializer or are set to the default value for the type of the variable. If the Initializer is void, however, the variable is not initialized. If its value is used before it is set, undefined program behavior will result.
void foo() {
int x = void;
writefln(x); // will print garbage
}
Therefore, one should only use void initializers as a last resort when optimizing critical code.
Global and Static Initializers
The Initializer for a global or static variable must be evaluatable at compile time. Whether some pointers can be initialized with the addresses of other functions or data is implementation defined. Runtime initialization can be done with static constructors.